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WAVE MOTIONS CAUSED BY A SOURCE IN A FLUID OF VARIABLE DEPTH* 

A.N. BESTDZHEVA and A.A. DORFMAN 

Solutions of the problem of the wave motion produced by a pulsed source 
moving in a fluid over an inclined bottom are obtained. An asymptotic 
analysis of the solution is carried out and the structures of the wave 
fields are investigated. 

The motion of a source in a fluid of constant depth has been quite thoroughly studied 
by the successive application of integral transforms and the stationary phase method /l-3/. 
An asymptotic theory of wave motions has been developed /4/ for small variations of a base of 
arbitrary form. This is based on the use of the apparatus of pseudodifferential operators 
and the reduction of the problem to the solution of Hamiltonian systems. Only some special 
cases have been considered when there are significant changes in depth (the fluid is bounded 
by a planar inclined bottom): the problem has been formulated of the structure of the wave 
wake behind a moving source and a method of solving it has been pointed out in /5/, and a 
solution of the planar problem for a pulsating source has been constructed in /6/. 

1. Let a source of intensity b, pulsating at a frequency o and moving at a velocity c 
parallel to the shore line be placed in a fluid which occupies a wedge-shaped domain at the 
instant of time t = 0 (Fig.1). 

Fig.1 

We shall write the equations, the boundary conditions and the initial conditions of the 
problem within the framework of linear dispersion theory /2, 7/ 

*Prikl.Matem.Mekhan.,55,3,401-409,199i 
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Here, G is a non-stationary Green's function, r,tI and z are cylindrical coordinates, 

(r01 007 0) is the position of the source B, t is the time, g is the acceleration due to gravity 
and q is the elevation of the free surface. 

Using the method of integral transforms, we obtain the solution of problem (1.1) in the 
form 

G = G” + Gd 

where G" and G* are determined by the eigenfunctions of the continuous and discrete spectra 
respectively /a/. 

On passing to the limit as t-+90, we write the formulae for the steady-state motion 

G, = ,‘i; G = E (-ot) (G,’ + Gad) (1.2) 

(1.3) 

YC = 0,’ (ro, e,) w (r, q, Yd (x) = c&d (xro, (3,) @,d (xr, e) 

c2,* = 0 + fit - csc cos h, - s&* = 0 * I/gpy - cu 

&=V-FFE y = cos zp, p, q > 0, u = p npE u > 0 
n-1 

sl = (-l)("+Nz {2(1 + y)N"-') j~l_~Z - h=ziisin(k + l)fJsin(k-9B}-1 

where ,cP" and CD,d are the eigenfunctions of the continuous and discrete spectra respectively, 

which have been determined in /ES/: 

(- 1)~ i (--rq cos (akj + (- i)j e) + + (n-i)} 
akj = 2 (k - i) P 

n-1 n--k 

rr 
o="--k+l 

(pasin*op + 42) II ctgap [+P*sin20fi + (- i)riqS,] 
CT=1 

1 n--l 

@,d=$&): B,, exp(--rpsin(akj +(-I)'8 + @)) 
j=o k-l 

n-1 

B,, = (- I)“-k II sin(o-Qpsin(of1)p x 
o=n--k+1 

n--k 

0lI ctgoBsin(o + ~)Bcos(o---l)P 

Let us now investigate the quantity GSC for the waves of the continuous spectrum. We 

shall carry out this investigation by analogy with the problems considered in /2, 3/ for the 

case of an infinitely deep fluid. 
An analysis of the zeros of the expressions C&f, carried out as in /7/, shows that, in 

order to ensure exponential decay when t-too, the path in the complex plane S, for the 

interval 0 <h< n/2 must be displaced below the real axis in the neiqhbourhood of the 

points 

We shall denote this deformed path by c,. For the interval 

n12<%n-hT 1 0, tT < ‘I4 
yo = arccos[q(4co)-'I, z > '/& 

the path in the complex plane s, must be deformed in such a way that it lies below the real 

axis in the neighbourhood of the point s,- and above the real axis in the neighbourhood of 
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the point s,+. We shall denote this path by G,. It follows from this that 

The paths G, and C, are shown in Fig.2. 

0.4) 

Fig.2 

By carrying out an analogous investigation of Gad, we obtain from (1.3) an expression 
for the waves of the discrete spectrum 

(1.5) 

Y[d(X) = E W 
#PY - (0 - w yd (P) 

The deformed path L, in the p-plane coincides with the deformed path G, in the s,- 
plane while the path L, differs from G, in that it is located on the negative real semi- 
axis of the U.-plane. The poles Pl .e are determined using the formulae 

PI,?d = g 
~~+P*)/Y(Y+~T) 

2c' W) 

and the poles olS2 are determined using formulae which differ from (1.6) in that y is 
replaced by -T and they exist subject to the condition y >, 4% that is, for iT = E* + S,..., 
n - 1, where E* = @" arecos 47. 

Introducing the variable v = oVg, we get from formulae (1.4) and (1.5) by Cauchy's 
residue theorem 

Here 

when s,*z-+ + 00 

If = 
se* E (s,fz 00s a) 

til+4rcosR 

y” 

We shall use the stationary-phase method /9/ for the subsequent estimation of the 
integrals in (1.7) and (1.9). The value of the integral 

(1.7) 

(1.8) 

(1.91 

(1.10) 
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at large values of the parameter W* = s,*i?, where R = 1/(r - r,,)* + z9, 
expression 

is determined by the 

where h, are the roots of the equation s'(h,) = 0. Hence, the subsequent estimation involves 
a search for the roots of the following equations: 

dr * 
A= a,* zsinh+Mcos A 
d?" scosB-Msinh (1.11) 

M = (-1)~r cos (afi, + (-1)j fJ) + (--l)X'r, cos (a&,jg + (-l)j'&) 

In order to determine the roots of these equations we shall confine ourselves to the case 
of small values of z which satisfy the condition r<'/,. When YZ-+c0, expressions (1.7)- 
(1.10) can be represented, apart from terms containing ra, in the form 

nla 
G/=2 1 (I-44rcosh)E(~z(l-2rcos~)cosh)Y'dh 

0 

and, when YZ+-KJ, the quantity G,' is determined according to a formula which 
from (1.12) in that the integral is taken from nl2 to x and Gsd is determined 
formula which differs from (1.13) in that z is replaced by --z. 

The asymptotic estimate of G," has the form 

(1.12) 

(1.13) 

differs 
using a 

G,C*-&(&-)h~(D(~ ‘~~~~;1;$ exp(-v(I-2rcosh,,)~ 

(B- i(zcosh,-M sin 5,)) + $sgnS"(&)))) 

I=expI~~(n-l)[(-l)~+(-~)~~]}, D= +,$4$l~pl > - 
s" (ho) = .Z (42 cos 2& - cos h,) - M (42 sin 2h, - sink,) 

where h, is a root of the equation 

z (27 sin 2h - sin h) + M (27 cos 2h - cos h) = 0 

h E [O, n/21 when vz++oo, h E [n/2, nl when vz+ - 00 and a is calculated using a 
formula which differs from (1.11) by the condition that x = x' = 0 and by the replacement 
of cos by sin. 

Analysis of the resulting solution enables us to investigate the structure of the marine 
waves which are a particular realization of Cherenkov radiation in a dispersive medium. The 
radiation field is formed by the waves of the continuous and discrete spectra and cosists of 
two characteristic zones: the neighbourhood of the source and the coastal zone. In the 
neighbourhood of the source the wave motion is provided by the waves of the continuous 
spectrum and consists of a wave field which is symmetrical about the z = 0 axis and is 
caused by the pulsation of the source and of the wave wake which is localized in the tail 
part and is caused by the translational motion of the source. The waves of the discrete 
spectrum provide the motion in the coastal zone. A Stokes wave is found in the composition 
of the waves of the discrete spectrum. This wave is greater than all the remaining waves in 
the neighbourhood of the shore line and it may be assumed that the wave motion which propagates 
along the shore line is solely formed by the Stokes wave. 

The asymptotic estimates which have been obtained show that, for small z, a moving and 
pulsating source radiates waves which diverge on all sides from the source. These waves, 
unlike the radiation from a fixed pulsating source, depend on direction, and a complex 
radiation pattern is formed. Cherenkov radiation (marine waves) is superimposed on this main 
wave field. If the emission frequency o is low and g/c" is a finite quantity, then the 
Cherenkov radiation with characteristic features which are inherent when there is a sloping 
bottom predominates. G,+O when r>l'i,. 

2. Let us now consider the special cases of a moving source of constant intensity (W = 0) 
and a fixed pulsating source (c = 0) which allow the problem to be solved in explicit form. 
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Let 0 = 0. In this case the parameters of the problem are determined using the formulae 

and the functions Gc and Gd, obtained from formulae (1.4) and (1.5) using Cauchy's residue 
theorem, have the form 

(2.1) 

(2.2) 

When constructing formulae (2.1) and (2.2) which describe the zone of Cherenkov emission, 
the condition that there is nowavefront in front of the source we ensured. On the basis of 
(2.1) and (2.2) we calculate the elevation of the free surface 

(1/1+ Ho + i ((- I)9 + M,u))) du)) 
M,, g, = M, XT (e = o) 

n--l 

rid = ~pcoS($ z)Y"($)l,,, (2.4) 

Let us now carry out an asymptotic analysis of expression (2.3) using the stationary- 
phase method (the large parameter W= gRl$). For this purpose we study the behaviour of the 
phase function 

S (u) = R-’ (1 + uz)I'. ((-I)% + M,u) 

The stationary points s(u) are calculated using the formula 

U* = [-- (-I)% & l/z* - 8Moal/(4M,) 

The condition that the roots U* are real and positive determines 
existence of the wave motion of the fluid caused by the motion of the 

0 < M, < z/(2 I/?!) 

the domain of the 
source: 

At the points of inflection of the phase function (s"(u*) = 0) , the stationary points 
U* = 2-G are degenerate, which is allowed for in writing the asymptotic formulae. Hence: 

where MO = z/(2 1/2, . 
DOand D1 are conditional operators: Do indicates that the summation is carried out 

over indices which satisfy the condition - (-i)xcosa,,>O and D1 indicates that summation 
is carried out over indices which satisfy the condition (-~)rCOSakj>O. 

Let us now analyse expression (2.4). In the coastal zone the magnitude of qn is calcu- 
lated using(2.4) in which r? 0. In the neighbourhood of the shore line, the Stokes wave is 
the decisive wave of the waves of the discrete spectrum and the wave motion corresponding to 



330 

it has the form 

As can be seen from (2.5), as the source becomes farther from the shore line, the waves 
of the discrete spectrum decay exponentially. 

Let us describe the structure of the wave field which is formed during the motion of the 
source over the surface of a fluid of variable depth (6, = 0). Unlike the case of an infi- 
nitely deep fluid in which the Cherenkov radiation is concentrated in a wedge with an aperture 
angle of 19"28' behind the moving source, in the case of an inclined bottom it forms a domain 
bounded on one side from the line of motion of the source to the shore line r = 0, along 
which the Stokes wave propagates and, on the other side, when r> rot by the line 

T =z(2l/2)cos(nm/n))-~ + r0 (cos (rim/n))))' (2.6) 

We shall call the line which is described by Eq.(2.6) the boundary of the wave field. 
As the angle of inclination of the bottom S decreases, the boundary of the wave field unfolds 
to an ever greater angle with respect to the line of motion of the source and, when /3+-O, 
the line (2.6) subtends an angle with the line of motion which is close to ni2. 

As the source becomes more remote from the shore, the shore line ceases to play the role 
of a boundary of the domain of radiation when r< ro, and the straight line 

r = rO cos @cm/n) - z/(2 1/Z) 

becomes the boundary of the domain. 

a 

b 

Fig.4 

Fig.3 

The aperture angle of the Cherenkov wedge increases and, at the same time, the wedge is 
unfolded with respect to the line of motion of the source by the vertex to the shore (Fig.3). 

The internal filling of the Cherenkov wedge is a result of the superpositioning of 
longitudinal and transverse waves. Waves possessing a rectilinear front, the equation of 
which has the form M = z/21/2, and which are characterized by the fact that there is a 
significant increase in the amplitudes of the wave field (of the longitudinal and transverse 
waves) in these lines are formed on the background of such wave formations which decay as R-‘fa. 
We shall refer to the above-mentioned lines as divergent waves. Such waves also exist in the 
case of an infinitely deep fluid which is unbounded in the plane and are the boundaries of 
the wave wake. The system of divergent waves consists of m + 1 families and each family 
of waves is characterized by the one and the same aperture angle (I COS lZkj 1 = COS (TLSln), S = 0, 

1 m) and includes 
from'ghe shore. 

m+i direct waves and m + 1 waves which have been reflected 

In the domain r>rO, the direct waves depart to infinity, decaying as R-‘1~. In the 
domain r<r,, the m + 1 direct waves are incident upon the shore at certain points with 
the coordinates z = 2 1/%, cos (nsin), s = 0, 1, . . ., m (we shall refer to these as shore points) 
and subsequently form reflected waves. A fan consisting of m + 1 direct waves (one from 
each family) arrives at each shore point and a fan of reflected waves, of which there are also 
m + 1. leaves the shore. The direct and reflected waves are symmetrically arranged with 
respect to the lines 

r = z (2 1/2cos (ns/n))-1 (2.7) 

in a band with a width of 2r, (cos (iv/n))-’ (s is the number of the family). The axes of 



331 

symmetry of each of the m i- 1 families are divergent waves from the source which move along 
the shore line (rO = 0). In this case the reflected waves merge with the direct waves and each 
s-th family degenerates into a single line (2.7). The family of direct and reflected waves 
closest to the shore (s = 0) is inclined at an angle of 19"28' for any p which corresponds 
to the motion of a source in an infinitely deep fluid. 

The structure of the wave wake when i3 = n/6 (m = 1) is shown in Fig.4 where the numbers 
1 and 2 indicate the direct and reflected waves respectively and the letters a and b refer to 
the numbers of the wave families which are characterized by the same aperture angle. 

One can be guided by the following rule in constructing the wave pattern: a system con- 
sisting of 2m +I fictitious sources, located on the z=o axis and removed Erom the 
shore line to a distance of 

r = $-r,/cos (m/n), s = 0, 1, . . ., m 

is added to the real source which is located on the z = 0 axis at a distance T,, from the 
shore line. 

A ray at an angle of arctg I(2 1/2cos (ns/n))-'1 passes from each of the 2m + 2 sources 
and, moreover, two fictitious sources, arranged symmetrically about the r = 0 axis, correspond 
to each s. At large distances from the source, the rays leaving the m+I sources, located 
on the positive part of the r axis, correspond to direct waves while the rays leaving the 

m+l sources located on the negative part of the r axis correspond to waves which have 
been reflected from the shore. 

The problem of the structure of the wave wake which is formed during the motion of a 
source over a planar inclined bottom was considered for the first time in /5/ for values of 
the angles p=ni4 and nl6. However, the mixed nature of the eigenfunction spectrum of the 
problem was not established and, as a result of this, only one component of the solution was 
found which is associated with the eigenfunctions of the continuous spectrum. Only a single 
wave was found from the combination of the divergent waves which corresponds to the wave 
which is formed when a source moves in a fluid half-space. A qualitative interpretation of 
the solution /5/ is given in-the first edition (published in 1936) of /l/ (pp.117-118). 
However, the wave picture which is presented is incomplete in view of the above-mentioned 
constraint on the solution in /5/. 

Comparison of the quantities qc and qd shows that the wave motion due to the waves of 
the continuous spectrum decays close to the shore line as z-V* , while the motion due to the 
waves of the discrete spectrum involves the propagation of non-decaying waves. 

On the basis of the results which have been described, it is possible to obtain a formula 
for the wave resistance F of a body of the Mitchell type which moves at a constant velocity c 
parallel to the shore line at a distance z,, from it 

where ) I - x,, 1 = f(y,z) is the equation of the contour of the body, 
of points on the surface of the body S around which the flow occurs 
the fluid. 

The dependence (2.8) is a generalization of Mitchell's formula 
depth /l/. 

Ye* zo are the coordinates 
and P is the density of 

in a domain of variable 

Let c = 0. When 7 = 0, in the case df the pulsation of a fixed source, we get from 
(1.12) and (1.13) that 

rl = iog-'E (-ot)G, 10~ 
(2.9) 

/&c+/3&- j, 
Cd 

D”(D(I(z* + M2)-'j,exp(-VJV + i (-1l)a x 

(vVzZ + MZ--n/4)))) 
'Y-1 

G.d=~~e,gZeos(~z)yd(~j 

In the coastal zone, the wave field is determined using the formula and by putting G,c = 
0 (z-'1') in the last formula of (2.9) when r = 0. 

In the neighbourhood of the shore line, the Stokes wave is the decisive wave of all the 
waves of the discrete spectrum and the wave motion corresponding to it has the form 
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ON THE RATE OF PROPAGATION OF SMALL PERTURBATIONS IN POROUS MEDIA* 

S.I. SAFARGULOVA and N.N. SMIRNOV 

The properties of a system of equations which describes the two-speed 
motion of a porous medium are investigated. The type of system of 
equations is defined as a function of the rate of slippage of the phases 
and the difference in the stresses in the phases. The domains of 
variation of the decisive parameters for which the system of equations 
describing the dynamics of a two-phase porous medium remains hyperbolic 
are established. 

For the correct formulation of the problem of the two-speed flow of a compressible 
porous medium it is necessary to determine the type of corresponding system of differntial 
equations. There are a considerable number of papers dealing with similar kinds of 
investigations for various systems of equations describing the motion of multiphase media. 
The equations of continuity and the equations of motion are written out for each phase: an 
assumption concerning barotropicity is used for the closure of the system and the 
non-hyperbolic nature of such a system of equations is indicated for real values of the 
difference in the speeds of the phases /l, 21. It has been shown /3/ that, in the more 
general case for the complete system of equations which describes the flow of compressible 
phases using a model containing the same pressure for the different phases, the system of 
differential equations is not hyperbolic for real values of the magnitude of slippage. The 
propagation of small perturbations in a mixture with a barotropic gas phase has been 
investigated: it was noted that the non-hyperbolic character and instability of the small 
perturbations which are typical of the system of differential equations are attributable to 
an insufficiently complete description of the interphase interactions within the disperse 


